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Abstract

Mining information and knowledge from large databases has been recognized by many re-

searchers as a key research topic in database systems and machine learning, and by many

industrial companies as an important area with an opportunity of major revenues. Researchers

in many di�erent �elds have shown great interest in data mining. Several emerging applica-

tions in information providing services, such as data warehousing and on-line services over the

Internet, also call for various data mining techniques to better understand user behavior, to

improve the service provided, and to increase the business opportunities. In response to such

a demand, this article is to provide a survey, from a database researcher's point of view, on

the data mining techniques developed recently. A classi�cation of the available data mining

techniques is provided and a comparative study of such techniques is presented.

Index Terms | Data mining, knowledge discovery, association rules, classi�cation, data

clustering, pattern matching algorithms, data generalization and characterization, data cubes,

multiple-dimensional databases.

�J. Han was supported in part by the research grant NSERC-A3723 from the Natural Sciences and Engineering
Research Council of Canada, the research grant NCE:IRIS/Precarn-HMI5 from the Networks of Centres of Excellence
of Canada, and research grants from MPR Teltech Ltd. and Hughes Research Laboratories.



1 Introduction

Recently, our capabilities of both generating and collecting data have been increasing rapidly. The

widespread use of bar codes for most commercial products, the computerization of many business

and government transactions, and the advances in data collection tools have provided us with huge

amounts of data. Millions of databases have been used in business management, government ad-

ministration, scienti�c and engineering data management, and many other applications. It is noted

that the number of such databases keeps growing rapidly because of the availability of powerful

and a�ordable database systems. This explosive growth in data and databases has generated an

urgent need for new techniques and tools that can intelligently and automatically transform the

processed data into useful information and knowledge. Consequently, data mining has become a

research area with increasing importance [30, 70, 76].

Data mining, which is also referred to as knowledge discovery in databases, means a process

of nontrivial extraction of implicit, previously unknown and potentially useful information (such

as knowledge rules, constraints, regularities) from data in databases [70]. There are also many

other terms, appearing in some articles and documents, carrying a similar or slightly di�erent

meaning, such as knowledge mining from databases, knowledge extraction, data archaeology, data

dredging, data analysis, and so on. By knowledge discovery in databases, interesting knowledge,

regularities, or high-level information can be extracted from the relevant sets of data in databases

and be investigated from di�erent angles, and large databases thereby serve as rich and reliable

sources for knowledge generation and veri�cation. Mining information and knowledge from large

databases has been recognized by many researchers as a key research topic in database systems and

machine learning, and by many industrial companies as an important area with an opportunity

of major revenues. The discovered knowledge can be applied to information management, query

processing, decision making, process control, and many other applications. Researchers in many

di�erent �elds, including database systems, knowledge-base systems, arti�cial intelligence, machine

learning, knowledge acquisition, statistics, spatial databases, and data visualization, have shown

great interest in data mining. Furthermore, several emerging applications in information providing

services, such as on-line services and World Wide Web, also call for various data mining techniques

to better understand user behavior, to meliorate the service provided, and to increase the business

opportunities.

In response to such a demand, this article is to provide a survey on the data mining techniques

developed in several research communities, with an emphasis on database-oriented techniques and

those implemented in applicative data mining systems. A classi�cation of the available data mining
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techniques is also provided, based on the kinds of databases to be mined, the kinds of knowledge

to be discovered, and the kinds of techniques to be adopted. This survey is organized according to

one classi�cation scheme: the kinds of knowledge to be mined.

1.1 Requirements and challenges of data mining

In order to conduct e�ective data mining, one needs to �rst examine what kind of features an

applied knowledge discovery system is expected to have and what kind of challenges one may face

at the development of data mining techniques.

1. Handling of di�erent types of data.

Because there are many kinds of data and databases used in di�erent applications, one may

expect that a knowledge discovery system should be able to perform e�ective data mining

on di�erent kinds of data. Since most available databases are relational, it is crucial that a

data mining system performs e�cient and e�ective knowledge discovery on relational data.

Moreover, many applicable databases contain complex data types, such as structured data and

complex data objects, hypertext and multimedia data, spatial and temporal data, transaction

data, legacy data, etc. A powerful system should be able to perform e�ective data mining on

such complex types of data as well. However, the diversity of data types and di�erent goals of

data mining make it unrealistic to expect one data mining system to handle all kinds of data.

Speci�c data mining systems should be constructed for knowledge mining on speci�c kinds

of data, such as systems dedicated to knowledge mining in relational databases, transaction

databases, spatial databases, multimedia databases, etc.

2. E�ciency and scalability of data mining algorithms.

To e�ectively extract information from a huge amount of data in databases, the knowledge

discovery algorithms must be e�cient and scalable to large databases. That is, the running

time of a data mining algorithm must be predictable and acceptable in large databases.

Algorithms with exponential or even medium-order polynomial complexity will not be of

practical use.

3. Usefulness, certainty and expressiveness of data mining results.

The discovered knowledge should accurately portray the contents of the database and be useful

for certain applications. The imperfectness should be expressed by measures of uncertainty,

in the form of approximate rules or quantitative rules. Noise and exceptional data should

be handled elegantly in data mining systems. This also motivates a systematic study of
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measuring the quality of the discovered knowledge, including interestingness and reliability,

by construction of statistical, analytical, and simulative models and tools.

4. Expression of various kinds of data mining results.

Di�erent kinds of knowledge can be discovered from a large amount of data. Also, one may

like to examine discovered knowledge from di�erent views and present them in di�erent forms.

This requires us to express both the data mining requests and the discovered knowledge in

high-level languages or graphical user interfaces so that the data mining task can be speci�ed

by nonexperts and the discovered knowledge can be understandable and directly usable by

users. This also requires the discovery system to adopt expressive knowledge representation

techniques.

5. Interactive mining knowledge at multiple abstraction levels.

Since it is di�cult to predict what exactly could be discovered from a database, a high-level

data mining query should be treated as a probe which may disclose some interesting traces

for further exploration. Interactive discovery should be encouraged, which allows a user to

interactively re�ne a data mining request, dynamically change data focusing, progressively

deepen a data mining process, and 
exibly view the data and data mining results at multiple

abstraction levels and from di�erent angles.

6. Mining information from di�erent sources of data.

The widely available local and wide-area computer network, including Internet, connect many

sources of data and form huge distributed, heterogeneous databases. Mining knowledge from

di�erent sources of formatted or unformatted data with diverse data semantics poses new

challenges to data mining. On the other hand, data mining may help disclose the high-level

data regularities in heterogeneous databases which can hardly be discovered by simple query

systems. Moreover, the huge size of the database, the wide distribution of data, and the

computational complexity of some data mining methods motivate the development of parallel

and distributed data mining algorithms.

7. Protection of privacy and data security.

When data can be viewed from many di�erent angles and at di�erent abstraction levels, it

threatens the goal of protecting data security and guarding against the invasion of privacy. It

is important to study when knowledge discovery may lead to an invasion of privacy, and what

security measures can be developed for preventing the disclosure of sensitive information.
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Notice that some of these requirements may carry con
icting goals. For example, the goal of

protection of data security may con
ict with the requirement of interactive mining of multiple-

level knowledge from di�erent angles. Moreover, this survey addresses only some of the above

requirements, with an emphasis on the e�ciency and scalability of data mining algorithms. For

example, the handling of di�erent types of data are con�ned to relational and transactional data,

and the methods for protection of privacy and data security are not addressed (some discussions

could be found elsewhere, such as [22, 63]). Nevertheless, we feel that it is still important to present

an overall picture regarding to the requirements of data mining.

2 An Overview of Data Mining Techniques

Since data mining poses many challenging research issues, direct applications of methods and

techniques developed in related studies in machine learning, statistics, and database systems cannot

solve these problems. It is necessary to perform dedicated studies to invent new data mining

methods or develop integrated techniques for e�cient and e�ective data mining. In this sense, data

mining itself has formed an independent new �eld.

2.1 Classifying data mining techniques

There have been many advances on researches and developments of data mining, and many data

mining techniques and systems have recently been developed. Di�erent classi�cation schemes can

be used to categorize data mining methods and systems based on the kinds of databases to be

studied, the kinds of knowledge to be discovered, and the kinds of techniques to be utilized, as

shown below.

� What kinds of databases to work on.

A data mining system can be classi�ed according to the kinds of databases on which the data

mining is performed. For example, a system is a relational data miner if it discovers knowledge

from relational data, or an object-oriented one if it mines knowledge from object-oriented

databases. In general, a data miner can be classi�ed according to its mining of knowledge from

the following di�erent kinds of databases: relational databases, transaction databases, object-

oriented databases, deductive databases, spatial databases, temporal databases, multimedia

databases, heterogeneous databases, active databases, legacy databases, and the Internet

information-base.
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� What kind of knowledge to be mined.

Several typical kinds of knowledge can be discovered by data miners, including association

rules, characteristic rules, classi�cation rules, discriminant rules, clustering, evolution, and

deviation analysis, which will be discussed in detail in the next subsection.

Moreover, data miners can also be categorized according to the abstraction level of its discov-

ered knowledge which may be classi�ed into generalized knowledge, primitive-level knowledge,

and multiple-level knowledge. A 
exible data mining system may discover knowledge at mul-

tiple abstraction levels.

� What kind of techniques to be utilized.

Data miners can also be categorized according to the underlying data mining techniques. For

example, it can be categorized according to the driven method into autonomous knowledge

miner, data-driven miner, query-driven miner, and interactive data miner. It can also be cat-

egorized according to its underlying data mining approach into generalization-based mining,

pattern-based mining, mining based on statistics or mathematical theories, and integrated

approaches, etc.

Amongmany di�erent classi�cation schemes, this survey follows mainly one classi�cation scheme:

the kinds of knowledge to be mined because such a classi�cation presents a clear picture on di�erent

data mining requirements and techniques. Methods for mining di�erent kinds of knowledge, includ-

ing association rules, characterization, classi�cation, clustering, etc. are examined in depth. For

mining a particular kind of knowledge, di�erent approaches, such as machine learning approach,

statistical approach, and large database-oriented approach, are compared, with an emphasis on the

database issues, such as e�ciency and scalability.

2.2 Mining di�erent kinds of knowledge from databases

Data mining is an application-dependent issue and di�erent applications may require di�erent

mining techniques to cope with. In general, the kinds of knowledge which can be discovered in a

database are categorized as follows.

Mining association rules in transactional or relational databases has recently attracted a lot of

attention in database communities [4, 7, 39, 57, 66, 73, 78]. The task is to derive a set of strong

association rules in the form of \A1^� � �^Am =) B1^� � �^Bn," where Ai (for i 2 f1; : : : ; mg) and

Bj (for j 2 f1; : : : ; ng) are sets of attribute-values, from the relevant data sets in a database. For

example, one may �nd, from a large set of transaction data, such an association rule as if a customer
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buys (one brand of) milk, he/she usually buys (another brand of) bread in the same transaction.

Since mining association rules may require to repeatedly scan through a large transaction database

to �nd di�erent association patterns, the amount of processing could be huge, and performance

improvement is an essential concern at mining such rules. E�cient algorithms for mining association

rules and some methods for further performance enhancements will be examined in Section 3.

The most popularly used data mining and data analysis tools associated with database sys-

tem products are data generalization and summarization tools, which carry several alternative

names, such as on-line analytical processing (OLAP), multiple-dimensional databases, data cubes,

data abstraction, generalization, summarization, characterization, etc. Data generalization and

summarization presents the general characteristics or a summarized high-level view over a set of

user-speci�ed data in a database. For example, the general characteristics of the technical sta�s in

a company can be described as a set of characteristic rules or a set of generalized summary tables.

Moreover, it is often desirable to present generalized views about the data at multiple abstrac-

tion levels. An overview on multi-level data generalization, summarization, and characterization is

presented in Section 4.

Another important application of data mining is the ability to perform classi�cation in a huge

amount of data. This is referred to as mining classi�cation rules. Data classi�cation is to classify a

set of data based on their values in certain attributes. For example, it is desirable for a car dealer

to classify its customers according to their preference for cars so that the sales persons will know

whom to approach, and catalogs of new models can be mailed directly to those customers with

identi�ed features so as to maximize the business opportunity. Some studies in classi�cation rules

will be reviewed in Section 5.

In Section 6, we discuss the techniques on data clustering. Basically, data clustering is to group

a set of data (without a prede�ned class attribute), based on the conceptual clustering principle:

maximizing the intraclass similarity and minimizing the interclass similarity. For example, a set of

commodity objects can be �rst clustered into a set of classes and then a set of rules can be derived

based on such a classi�cation. Such clustering may facilitate taxonomy formation, which means

the organization of observations into a hierarchy of classes that group similar events together.

Temporal or spatial-temporal data constitutes a large portion of data stored in computers

[9, 80]. Examples of this type of database include: �nancial database for stock price index, medical

databases, and multimedia databases, to name a few. Searching for similar patterns in a temporal or

spatial-temporal database is essential in many data mining operations [1, 3, 56] in order to discover

and predict the risk, causality, and trend associated with a speci�c pattern. Typical queries for
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this type of database include identifying companies with similar growth patterns, products with

similar selling patterns, stocks with similar price movement, images with similar weather patterns,

geological features, environmental pollutions, or astrophysical patterns. These queries invariably

require similarity matches as opposed to exact matches. The approach of pattern-based similarity

search is reviewed in Section 7.

In a distributed information providing environment, documents or objects are usually linked

together to facilitate interactive access. Understanding user access patterns in such environments

will not only help improving the system design but also be able to lead to better marketing decisions.

Capturing user access patterns in such environments is referred to asmining path traversal patterns.

Notice, however, that since users are traveling along the information providing services to search for

the desired information, some objects are visited because of their locations rather than their content,

showing the very di�erence between the traversal pattern problem and others which are mainly

based on customer transactions. The capability of mining path traversal patterns is discussed in

Section 8.

In addition to the issues considered above, there are certainly many other aspects on data

mining that are worthy of studying. It is often necessary to use a data mining query language

or graphical user interface to specify the interesting subset of data, the relevant set of attributes,

and the kinds of rules to be discovered. Moreover, it is often necessary to perform interactive data

mining to examine, transform, and manipulate intermediate data mining results, focus at di�erent

concept levels, or test di�erent kinds of thresholds. Visual representation of data and knowledge

may facilitate interactive knowledge mining in databases.

3 Mining Association Rules

Given a database of sales transactions, it is desirable to discover the important associations among

items such that the presence of some items in a transaction will imply the presence of other items

in the same transaction. A mathematical model was proposed in [4] to address the problem of

mining association rules. Let I=fi1, i2, :::, img be a set of literals, called items. Let D be a set of

transactions, where each transaction T is a set of items such that T � I. Note that the quantities

of items bought in a transaction are not considered, meaning that each item is a binary variable

representing if an item was bought. Each transaction is associated with an identi�er, called TID.

Let X be a set of items. A transaction T is said to contain X if and only if X � T . An association

rule is an implication of the form X =) Y , where X � I, Y � I and X
T
Y = �. The rule

X =) Y holds in the transaction set D with con�dence c if c% of transactions in D that contain
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Database D

TID Items

100 A C D

200 B C E

300 A B C E

400 B E

Figure 1: An example transaction database for data mining

X also contain Y . The rule X =) Y has support s in the transaction set D if s% of transactions

in D contain X
S
Y .

Con�dence denotes the strength of implication and support indicates the frequencies of the

occurring patterns in the rule. It is often desirable to pay attention to only those rules which may

have reasonably large support. Such rules with high con�dence and strong support are referred to

as strong rules in [4, 68]. The task of mining association rules is essentially to discover strong asso-

ciation rules in large databases. In [4, 7, 66], the problem of mining association rules is decomposed

into the following two steps:

1. Discover the large itemsets, i.e., the sets of itemsets that have transaction support above a

pre-determined minimum support s.

2. Use the large itemsets to generate the association rules for the database.

It is noted that the overall performance of mining association rules is determined by the �rst step.

After the large itemsets are identi�ed, the corresponding association rules can be derived in a

straightforward manner. E�cient counting of large itemsets is thus the focus of most prior work.

Here, algorithms Apriori and DHP, developed in [7] and [66] respectively, are described to illustrate

the nature of this problem.

3.1 Algorithm Apriori and DHP

Consider an example transaction database given in Figure 11. In each iteration (or each pass),

Apriori constructs a candidate set of large itemsets, counts the number of occurrences of each can-

didate itemset, and then determines large itemsets based on a pre-determined minimum support

[7]. In the �rst iteration, Apriori simply scans all the transactions to count the number of occur-

rences for each item. The set of candidate 1-itemsets, C1, obtained is shown in Figure 2. Assuming

1This example database is extracted from [7].
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Scan

D

�!

C1

Itemset Sup.

fAg 2

fBg 3

fCg 3

fDg 1

fEg 3

L1

Itemset Sup.

fAg 2

fBg 3

fCg 3

fEg 3

C2

Itemset

fA Bg
fA Cg
fA Eg
fB Cg
fB Eg
fC Eg

Scan

D

�!

C2

Itemset Sup.

fA Bg 1

fA Cg 2

fA Eg 1

fB Cg 2

fB Eg 3

fC Eg 2

L2

Itemset Sup.

fA Cg 2

fB Cg 2

fB Eg 3

fC Eg 2

C3

Itemset

fB C Eg

Scan

D

�!

C3

Itemset Sup.

fB C Eg 2

L3

Itemset Sup.

fB C Eg 2

Figure 2: Generation of candidate itemsets and large itemsets

that the minimum transaction support required is 2 (i.e., s = 40%), the set of large 1-itemsets, L1,

composed of candidate 1-itemsets with the minimum support required, can then be determined.

To discover the set of large 2-itemsets, in view of the fact that any subset of a large itemset must

also have minimum support, Apriori uses L1 �L1 to generate a candidate set of itemsets C2 where

� is an operation for concatenation in this case.2 C2 consists of
�jL1j

2

�
2-itemsets. Next, the four

transactions in D are scanned and the support of each candidate itemset in C2 is counted. The

middle table of the second row in Figure 2 represents the result from such counting in C2. The set

of large 2-itemsets, L2, is therefore determined based on the support of each candidate 2-itemset

in C2.

The set of candidate itemsets, C3, is generated from L2 as follows. From L2, two large 2-itemsets

with the same �rst item, such as fBCg and fBEg, are identi�ed �rst. Then, Apriori tests whether

the 2-itemset fCEg, which consists of their second items, constitutes a large 2-itemset or not. Since

fCEg is a large itemset by itself, we know that all the subsets of fBCEg are large and then fBCEg

becomes a candidate 3-itemset. There is no other candidate 3-itemset from L2. Apriori then scans

all the transactions and discovers the large 3-itemsets L3 in Figure 2. Since there is no candidate

4-itemset to be constituted from L3, Apriori ends the process of discovering large itemsets.

Similar to Apriori, DHP in [66] also generates candidate k-itemsets from Lk�1. However, DHP

2For the general case, Lk � Lk = fX [ Y jX;Y 2 Lk; jX \ Y j = k� 1g.
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employs a hash table, which is built in the previous pass, to test the eligibility of a k-itemset.

Instead of including all k-itemsets from Lk�1 � Lk�1 into Ck, DHP adds a k-itemset into Ck only

if that k-itemset is hashed into a hash entry whose value is larger than or equal to the minimum

transaction support required. As a result, the size of candidate set Ck can be reduced signi�cantly.

Such a �ltering technique is particularly powerful in reducing the size of C2. DHP also reduces the

database size progressively by not only trimming each individual transaction size but also pruning

the number of transactions in the database. We note that both DHP and Apriori are iterative

algorithms on the large itemset size in the sense that the large k-itemsets are derived from the

large (k � 1)-itemsets. These large itemset counting techniques are in fact applicable to dealing

with other data mining problems [8, 19].

3.2 Mining generalized and multiple-level association rules

In many applications, interesting associations among data items often occur at a relatively high

concept level. For example, the purchase patterns in a transaction database may not show any

substantial regularities at the primitive data level, such as at the bar-code level, but may show

some interesting regularities at some high concept level(s), such as milk and bread. Therefore, it

is important to study mining association rules at a generalized abstraction level [78] or at multiple

levels [39].

Information about multiple abstraction levels may exist in database organizations. For example,

a class hierarchy [50] may be implied by a combination of database attributes, such as day, month,

year. It may also be given explicitly by users or experts, such as Alberta � Prairies.

Consider the class hierarchy in Figure 3 for example. It could be di�cult to �nd substantial

support of the purchase patterns at the primitive concept level, such as the bar codes of 1 gallon

Dairyland 2% milk and 1lb Wonder wheat bread. However, it could be easy to �nd 80% of customers

that purchase milk may also purchase bread. Moreover, it could be informative to also show

that 70% of people buy wheat bread if they buy 2% milk. The association relationship in the

latter statement is expressed at a lower concept level but often carries more speci�c and concrete

information than that in the former. Therefore, it is important to mine association rules at a

generalized abstraction level or at multiple concept levels.

In [39], the notion of mining multiple-level association rules are introduced: low level associations

will be examined only when their high level parents are large at their corresponding levels, and

di�erent levels may adopt di�erent minimum support thresholds. Four algorithms are developed

for e�cient mining of association rules based on di�erent ways of sharing of multiple-level mining
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food

2% white

breadmilk

Dairyland Foremost

chocolate

Old Mills Wonder

wheat

Figure 3: An example of concept hierarchies for mining multiple-level association rules.

processes and reduction of the encoded transaction tables. In [78], methods for mining associations

at generalized abstraction level are studied by extension of the Apriori algorithm.

Besides mining multiple-level and generalized association rules, the mining of quantitative as-

sociation rules [79] and meta-rule guided mining of association rules in relational databases [33, 75]

are also studied recently, with e�cient algorithms developed.

3.3 Interestingness of discovered association rules

Notice that not all the discovered strong association rules (i.e., passing the minimum support and

minimum con�dence thresholds) are interesting enough to present.

For example, consider the following case of mining the survey results in a school of 5,000

students. A retailer of breakfast cereal surveys the students on the activities they engage in the

morning. The data show that 60% of students (i.e., 3,000 students) play basketball, 75% of students

(i.e., 3,750 students) eat cereal, and 40% of them (i.e., 2,000 students) both play basketball and

eat cereal. Suppose that a data mining program for discovering association rules is run on the

data with the following settings: the minimal student support is 2,000 and the minimal con�dence

is 60%. The following association rule will be produced: \(play basketball) =) (eat cereal),"

since this rule contains the minimal student support and the corresponding con�dence 2000
3000 = 0:66

is larger than the minimal con�dence required. However, the above association rule is misleading

since the overall percentage of students eating cereal is 75%, even larger than 66%. That is, playing

basketball and eating cereals are in fact negatively associated. Being involved in one decreases the

likelihood of being involved in the other. Without fully understanding this aspect, one could make

wrong business decisions from the rules derived.

To �lter out such kind of misleading associations, one may de�ne that an association rule \A
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=) B" is interesting if its con�dence exceeds a certain measure, or formally, P (A\B)
P (A)

is greater

than d, a suitable constant. However, the simple argument we used in the example above suggests

that the right heuristic to measure association should be P (A\B)
P (A)

� P (B) > d, or alternatively,

P (A \ B) � P (A) � P (B) > k, where k is a suitable constant. The expressions above essentially

represent tests of statistical independence. Clearly, the factor of statistical dependence among

various user behaviors analyzed has to be taken into consideration for the determination of the

usefulness of association rules.

There have been some interesting studies on the interestingness or usefulness of discovered

rules, such as [68, 78, 77]. The notion of interestingness on discovered generalized association rules

is introduced in [78]. The subjective measure of interestingness in knowledge discovery is studied

in [77].

3.4 Improving the e�ciency of mining association rules

Since the amount of the processed data in mining association rules tends to be huge, it is important

to devise e�cient algorithms to conduct mining on such data. In this section, some techniques to

improve the e�ciency of mining association rules are presented.

3.4.1 Database scan reduction

In both Apriori and DHP, C3 is generated from L2 � L2. In fact, a C2 can be used to generate the

candidate 3-itemsets. Clearly, a C0
3 generated from C2 � C2, instead of from L2 � L2, will have a

size greater than jC3j where C3 is generated from L2 �L2. However, if jC
0
3j is not much larger than

jC3j, and both C2 and C0
3 can be stored in main memory, we can �nd L2 and L3 together when the

next scan of the database is performed, thereby saving one round of database scan. It can be seen

that using this concept, one can determine all Lk's by as few as two scans of the database (i.e.,

one initial scan to determine L1 and a �nal scan to determine all other large itemsets), assuming

that C0
k for k � 3 is generated from C0

k�1 and all C0
ks for k > 2 can be kept in the memory. This

technique is called scan-reduction. In [19], the technique of scan-reduction was utilized and shown

to result in prominent performance improvement. Clearly, such a technique is applicable to both

Apriori and DHP.
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3.4.2 Sampling: Mining with adjustable accuracy

Several applications require mining the transaction data to capture the customer behavior in a very

frequent basis. In those applications, the e�ciency of data mining could be a more important factor

than the requirement for a complete accuracy of the results. In addition, in several data mining

applications the problem domain could only be vaguely de�ned. Missing some marginal cases with

con�dence and support levels at the borderline may have little e�ect on the quality of the solution to

the original problem. Allowing imprecise results can in fact signi�cantly improve the e�ciency of the

mining algorithms. As the database size increases nowadays, sampling appears to be an attractive

approach to data mining. A technique of relaxing the support factor based on the sampling size

is devised in [65] to achieve the desired level of accuracy. As shown in [65], the relaxation factor,

as well as the sample size, can be properly adjusted so as to improve the result accuracy while

minimizing the corresponding execution time, thereby allowing us to e�ectively achieve a design

trade-o� between accuracy and e�ciency with two control parameters. As a means to improve

e�ciency, sampling has been used in [78] for determining the cut-o� level in the class hierarchy of

items to collect occurrence counts in mining generalized association rules. Sampling was discussed

in [57] as a justi�cation for devising algorithms and conducting experiments with data sets of small

sizes.

3.4.3 Incremental updating of discovered association rules

Since it is costly to �nd the association rules in large databases, incremental updating techniques

should be developed for maintenance of the discovered association rules to avoid redoing data

mining on the whole updated database.

A database may allow frequent or occasional updates and such updates may not only invalidate

some existing strong association rules but also turn some weak rules into strong ones. Thus it is

nontrivial to maintain such discovered rules in large databases. An incremental updating technique

is developed in [21] for e�cient maintenance of discovered association rules in transaction databases

with data insertion. The major idea is to reuse the information of the old large itemsets and to

integrate the support information of the new large itemsets in order to substantially reduce the

pool of candidate sets to be re-examined.
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3.4.4 Parallel data mining

It is noted that data mining in general requires progressive knowledge collection and revision based

on a huge transaction database. How to achieve e�cient parallel data mining is a very challeng-

ing issue, since, with the transaction database being partitioned across all nodes, the amount of

inter-node data transmission required for reaching global decisions can be prohibitively large, thus

signi�cantly compromising the bene�t achievable from parallelization. For example, in a shared

nothing type parallel environment like SP2 [44], each node can directly collect information only

from its local database partition, and the process to reach a global decision from partial knowl-

edge collected at individual nodes could itself be complicated and communication intensive. An

algorithm for parallel data mining, called PDM, was reported in [67]. Under PDM, with the entire

transaction database being partitioned across all nodes, each node will employ a hashing method

to identify candidate k-itemsets (i.e., itemsets consisting of k items) from its local database. To

reduce the communication cost incurred, a clue-and-poll technique was devised in [67] to resolve

the uncertainty due to the partial knowledge collected at each node by judiciously selecting a small

fraction of the itemsets for the information exchange among nodes.

4 Multi-level Data Generalization, Summarization, and Characterization

Data and objects in databases often contain detailed information at primitive concept levels. For

example, the \item" relation in a \sales" database may contain attributes about the primitive level

item information such as item number, item name, date made, price, etc. It is often desirable to

summarize a large set of data and present it at a high concept level. For example, one may like to

summarize a large set of the items related to some sales to give a general description. This requires

an important functionality in data mining: data generalization.

Data generalization is a process which abstracts a large set of relevant data in a database from

a low concept level to relatively high ones. The methods for e�cient and 
exible generalization of

large data sets can be categorized into two approaches: (1) data cube approach [35, 43, 83, 84],

and (2) attribute-oriented induction approach [37, 40].

4.1 Data cube approach

The data cube approach has a few alternative names or a few variants, such as, \multidimensional

databases," \materialized views," and \OLAP (On-Line Analytical Processing)." The general idea

of the approach is to materialize certain expensive computations that are frequently inquired, es-
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pecially those involving aggregate functions, such as count, sum, average, max, etc., and to store

such materialized views in a multi-dimensional database (called a \data cube") for decision sup-

port, knowledge discovery, and many other applications. Aggregate functions can be precomputed

according to the grouping by di�erent sets or subsets of attributes. Values in each attribute may

also be grouped into a hierarchy or a lattice structure. For example, \date" can be grouped into

\day," \month," \quarter," \year," or \week", which form a lattice structure. Generalization and

specialization can be performed on a multiple dimensional data cube by \roll-up" or \drill-down"

operations, where a roll-up operation reduces the number of dimensions in a data cube or general-

izes attribute values to high-level concepts, whereas a drill-down operation does the reverse. Since

many aggregate functions may often need to be computed repeatedly in data analysis, the storage

of precomputed results in a multiple dimensional data cube may ensure fast response time and


exible views of data from di�erent angles and at di�erent abstraction levels.

For example, a relation with the schema \sales(part; supplier; customer; sale price)" can be

materialized into a set of eight views as shown in Figure 4 (extracted from [43]), where psc indicates

a view consisting of aggregate function values (such as total sales) computed by grouping three

attributes part, supplier, and customer, p indicates a view consisting of the corresponding aggregate

function values computed by grouping part alone, etc.

none

ps scpc

psc

p cs

Figure 4: Eight views of data cubes for sales information

There are commonly three choices in the implementation of data cubes: (1) physically materi-

alize the whole data cube, (2) materialize nothing, and (3) materialize only part of the data cube.

The problem of materialization of a selected subset of a very large number of views can be modeled

as a lattice of views. A recent study [43] has shown that a greedy algorithm, which, given what

views have already been materialized, selects for materializing those views that o�er the most im-

provement in average response time, is able to lead to results within 63% of those generated by the

optimal algorithm in all cases. As a matter of fact, in many realistic cases, the di�erence between

the greedy and optimal solutions is essentially negligible.

Data cube approach is an interesting technique with many applications [83]. Techniques for
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indexing multiple dimensional data cubes and for incremental updating of data cubes at database

updates have also been studied [83, 86]. Notice that data cubes could be quite sparse in many cases

because not every cell in each dimension may have corresponding data in the database. Techniques

should be developed to handle sparse cubes e�ciently. Also, if a query contains constants at even

lower levels than those provided in a data cube (e.g., a query refers time in the unit of \hour"

whereas the lowest concept level on time in the cube is \day"), it is not clear how to make the best

use of the precomputed results stored in the data cube.

4.2 Attribute-oriented induction approach

The data warehousing approach which uses materialized views are \o�-line" database computa-

tion which may not correspond to the most up-to-date database contents. An alternative, on-

line, generalization-based data analysis technique, is called attribute-oriented induction approach

[37, 40]. The approach takes a data mining query expressed in an SQL-like data mining query

language and collects the set of relevant data in a database. Data generalization is then performed

on the set of relevant data by applying a set of data generalization techniques [37, 40, 60], including

attribute-removal, concept-tree climbing, attribute-threshold control, propagation of counts and

other aggregate function values, etc. The generalized data is expressed in the form of a generalized

relation on which many other operations or transformations can be performed to transform gener-

alized data into di�erent kinds of knowledge or map them into di�erent forms [40]. For example,

drill-down or roll-up operations can be performed to view data at multiple abstraction levels [36];

the generalized relation can be mapped into summarization tables, charts, curves, etc., for presen-

tation and visualization; characteristic rules which summarize the generalized data characteristics

in quantitative rule forms can be extracted; discriminant rules which contrast di�erent classes of

data at multiple abstraction levels can be extracted by grouping the set of comparison data into

contrasting classes before data generalization; classi�cation rules which classify data at di�erent

abstraction levels according to one or a set of classi�cation attributes can be derived by applying a

decision tree classi�er [72] on the generalized data [42]; and association rules which associate a set

of generalized attribute properties in a logic implication rule by integration of attribute-oriented

induction and the methods for mining association rules [7, 39, 66, 78]. Moreover, statistical pattern

discovery can also be performed using attribute-oriented induction [24].

The core of the attribute-oriented induction technique is on-line data generalization which is

performed by �rst examining the data distribution for each attribute in the set of relevant data,

calculating the corresponding abstraction level that data in each attribute should be generalized

to, and then replacing each data tuple with its corresponding generalized tuple. The generaliza-
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tion process scans the data set only once and collects the aggregate values in the corresponding

generalized relation or data cube. It is a highly e�cient technique since the worst-case time com-

plexity of the process is O(n), if a cube structure is used (desirable when the data cube is dense),

or O(n log(p)), if a generalized relation is used (desirable when the corresponding cube is rather

sparse), where n is the number of tuples in the set of relevant data and p is the size (i.e., number

of tuples) of the generalized relation [40].

To support multiple-level data mining, especially the drill-down operations, the attribute-

oriented induction technique should generalize the set of relevant data to a minimal abstraction

level and maintain such a minimally generalized relation (if expressed by a relational structure) or

a minimally generalized cube (if expressed by a cube structure) to facilitate the traversals among

multiple abstraction spaces. The roll-up of a generalized relation may simply start with this rela-

tion; however, the drill-down of the relation may start with the minimal generalized relation and

perform data generalization to the corresponding abstraction levels [36].

The essential background knowledge applied in attribute-oriented induction is concept hierar-

chy (or lattice) associated with each attribute [37]. Most concept hierarchies are stored implicitly

in databases. For example, a set of attributes in address(number; street; city; province; country)

in a database schema represents the concept hierarchies of the attribute address. A set of at-

tributes in a data relation, though seemingly no strong semantic linkages exist, may also form

concept hierarchies (or lattices) among their supersets or subsets. For example, in the schema

item(id; name; category; producer; date made; cost; price), \fcategory, producer, date madeg � fcategory,

date madeg" indicates the former forms a lower level concept than the latter. Moreover, rules and

view de�nitions can also be used as the de�nitions of concept hierarchies [24]. Conceptual hierar-

chies for numerical or ordered attributes can be generated automatically based on the analysis of

data distributions in the set of relevant data [38]. Moreover, a given hierarchy may not be best

suited for a particular data mining task. Therefore, such hierarchies should be adjusted dynam-

ically in many cases based on the analysis of data distributions of the corresponding set of data

[38].

An an example, one may use data mining facilities to study the general characteristics of

NSERC (Natural Science and Engineering Research Council of Canada) research grant database.

To compare the research grants between `British Columbia' and `Alberta' (two neighbor provinces

in Western Canada) in the discipline of `Computer (Science)' according to the attributes: disc code

(discipline code) and grant category, the following data mining query can be speci�ed in a data

mining query language DMQL [42] as follows.
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use NSERC95

mine discriminant rule for `BC Grants'

where O.Province = `British Columbia'

in contrast to `Alberta Grants'

where O.Province = `Alberta'

from Award A, Organization O, Grant type G

where A.grant code = G.grant code and A.OrgID = O.OrgID

and A.disc code = `Computer'

related to disc code, grant category, count(*)%

The execution of this data mining query generates Table 1 which presents the di�erences between

the two provinces in terms of disc code, grant category and the number of the research grants. The

column support% represents the number of research grants in this category vs. the total number of

grants in its own province; where the comparison% represents the number of research grants in this

category in one province vs. that of the other. For example, the �rst (composite) row indicates that

for Computer Science Infrastructure Grants in the range of 40Ks to 60Ks, British Columbia takes

2.00% of its total number of Computer Science Grants, whereas Alberta takes 1.72%; however, in

comparison between these two provinces, British Columbia takes 66.67% of the share (in number)

whereas Alberta takes only 33.33%. Other rows have similar interpretations.

Notice with interactive data mining facilities, such as those provided in DBMiner, a user

may perform roll-up or drill-down operations conveniently. For example, one may drill down on

`grant category' to examine even �ner grant categories such as 0-10Ks, 10-15Ks, 15-20Ks, etc., or

roll-up on disc code to group together Infrastructure Grant, Research Grant: Individual, etc. into

one category `Any (Grant)'.

Overall, attribute-oriented induction is a technique for generalization of any subset of on-line

data in a relational database and extraction of interesting knowledge from the generalized data.

The generalized data may also be stored in a database, in the form of a generalized relation or a

generalized cube, and be updated incrementally upon database updates [37]. The approach has

been implemented in a data mining system, DBMiner, and been experimented in several large

relational databases [40, 42]. The approach can also be extended to generalization-based data

mining in object-oriented databases [41], spatial databases [53, 56], and other kinds of databases.

The approach is designed for generalization-based data mining. It is not suitable for mining speci�c

patterns at primitive concept levels although it may help guiding such data mining by �rst �nding

some traces at high concept levels and then progressively deepening the data mining process to

lower abstraction levels [53].
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class discipline grant category amount category support% comparison%

B.C. 2.00 66.67
Computer Infrastructure Grant 40Ks-60Ks

Alberta 1.72 33.33

B.C. 2.00 66.67
Computer Other 20Ks-40Ks

Alberta 1.72 33.33

B.C. 2.00 50.00
Computer Other 60Ks-

Alberta 3.45 50.00

B.C. 38.00 63.33
Computer Research Grant: Individual 0-20Ks

Alberta 37.93 36.67

B.C. 28.00 56.00
Computer Research Grant: Individual 20Ks-40Ks

Alberta 37.93 44.00

B.C. 6.00 75.00
Computer Research Grant: Individual 40Ks-60Ks

Alberta 3.45 25.00

B.C. 3.00 100.00
Computer Research Grant: Individual 60Ks-

Alberta 0.00 0.00

B.C. 19.00 76.00
Computer Scholarship 0-20Ks

Alberta 10.34 24.00

Table 1: Mining discriminant rules: A comparison of research grants in two provinces

5 Data Classi�cation

Data classi�cation is the process which �nds the common properties among a set of objects in a

database and classi�es them into di�erent classes, according to a classi�cation model. To construct

such a classi�cation model, a sample database E is treated as the training set, in which each tuple

consists of the same set of multiple attributes (or features) as the tuples in a large databaseW , and

additionally, each tuple has a known class identity (label) associated with it. The objective of the

classi�cation is to �rst analyze the training data and develop an accurate description or a model for

each class using the features available in the data. Such class descriptions are then used to classify

future test data in the database W or to develop a better description (called classi�cation rules)

for each class in the database. Applications of classi�cation include medical diagnosis, performance

prediction, selective marketing, to name a few.

Data classi�cation has been studied substantially in statistics, machine learning, neural net-

works, and expert systems [82] and is an important theme in data mining [30].

19



5.1 Classi�cation based on decision trees

A decision-tree-based classi�cation method, such as [71, 72], has been in
ucential in machine learn-

ing studies. It is a supervised learning method that constructs decision trees from a set of examples.

The quality (function) of a tree depends on both the classi�cation accuracy and the size of the tree.

The method �rst chooses a subset of the training examples (a window) to form a decision tree. If

the tree does not give the correct answer for all the objects, a selection of the exceptions is added to

the window and the process continues until the correct decision set is found. The eventual outcome

is a tree in which each leaf carries a class name, and each interior node speci�es an attribute with

a branch corresponding to each possible value of that attribute.

A typical decision tree learning system, ID-3 [71], adopts a top-down irrevocable strategy that

searches only part of the search space. It guarantees that a simple, but not necessarily the simplest,

tree is found. ID-3 uses an information-theoretic approach aimed at minimizing the expected

number of tests to classify an object. The attribute selection part of ID-3 is based on the plausible

assumption that the complexity of the decision tree is strongly related to the amount of information

conveyed by this message. An information-based heuristic selects the attribute providing the highest

information gain, i.e., the attribute which minimizes the information needed in the resulting subtrees

to classify the elements. An extension to ID-3, C4.5 [72], extends the domain of classi�cation from

categorical attributes to numerical ones.

The ID-3 system [71] uses information gain as the evaluation functions for classi�cation, with

the following evaluation function,

i = �(piln(pi));

where pi is the probability that an object is in class i. There are many other evaluation functions,

such as Gini index, chi-square test, and so forth [14, 52, 68, 82]. For example, for Gini index [14, 59],

if a data set T contains examples from n classes, gini(T ) is de�ned as,

gini(T ) = 1� �p2i :

where pi is the relative frequency of class i in T . Moreover, there are also approaches for tranform-

ing decision trees into rules [72] and transforming rules and trees into comprehensive knowledge

structures [34].

There have been many other approaches on data classi�cation, including statistical approaches

[18, 26, 68], rough sets approach [87], etc. Linear regression and linear discriminant analysis

techniques are classical statistical models [26]. Methods have also been studied for scaling machine

learning algorithms by combining base classi�ers from partitioned data sets [18]. There have also
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been some studies of classi�cation techniques in the context of large databases [2, 10]. An interval

classi�er has been proposed in [2] to reduce the cost of decision tree generation. The neural network

approach for classi�cation and rule extraction in databases has also been studied recently [55].

5.2 Methods for performance improvement

Most of the techniques developed in machine learning and statistics may encounter the problem

of scaling-up. They may perform reasonably well in relatively small databases but may su�er the

problem of either poor performance or the reduction of classi�cation accuracy when the training

data set grows very large, even though a database system has been taken as a component in some

of the above methods. For example, the interval classi�er proposed in [2] uses database indices

to improve only the e�ciency of data retrieval but not the e�ciency of classi�cation since the

classi�cation algorithm itself is essentially an ID-3 algorithm.

A direct integration of attribute-oriented induction with the ID-3 algorithm may help discovery

of classi�cation rules at high abstraction levels [40]. It, though e�cient, may reduce the classi�-

cation accuracy since the classi�cation interval may have been generalized to a rather high level.

A multiple-level classi�cation technique and a level adjustment and merge technique have been

developed in DBMiner to improve the classi�cation accuracy in large databases by the integration

of attribute-oriented induction and classi�cation methods [42].

Recently, Mehta et al. [59] has developed a fast data classi�er, called SLIQ (Supervised Learning

In QUEST), for mining classi�cation rules in large databases. SLIQ is a decision tree classi�er that

can handle both numeric and categorical attributes. It uses a novel pre-sorting technique in the tree

growing phase. This sorting procedure is integrated with a breadth-�rst tree growing strategy to

enable classi�cation of disk-resident datasets. SLIQ also uses a new tree-pruning algorithm that is

inexpensive, and results in compact and accurate trees. The combination of these techniques enables

it to scale for large data sets and classify data sets irrespective of the number of classes, attributes,

and examples. An approach, called meta-learning, was proposed in [17]. In [17], methods to learn

how to combine several base classi�ers, which are learned from subsets of data, were developed.

E�cient scaling-up to larger learning problems can hence be achieved.

Notice that in most prior work on decision tree generation, a single attribute is considered at

each level for the branching decision. However, in some classi�cation tasks, the class identity in

some cases is not so dependent on the value of a single attribute, but instead, depends upon the

combined values of a set of attributes. This is particularly true in the presence of those attributes

that have strong inference among themselves. In view of this, a two-phase method for multi-
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attribute extraction was devised in [20] to improve the e�ciency of deriving classi�cation rules in

a large training dataset. A feature that is useful in inferring the group identity of a data tuple

is said to have a good inference power to that group identity. Given a large training set of data

tuples, the �rst phase, referred to as feature extraction phase, is applied to a subset of the training

database with the purpose of identifying useful features which have good inference power to group

identities. In the second phase, referred to as feature combination phase, those features extracted

from the �rst phase are combinedly evaluated and multi-attribute predicates with strong inference

power are identi�ed. It is noted that the inference power can be improved signi�cantly by utilizing

multiple attributes in predicates, showing the advantage of using multi-attribute predicates.

6 Clustering analysis

The process of grouping physical or abstract objects into classes of similar objects is called clustering

or unsupervised classi�cation. Clustering analysis helps construct meaningful partitioning of a large

set of objects based on a \divide and conquer" methodology which decomposes a large scale system

into smaller components to simplify design and implementation.

As a data mining task, data clustering identi�es clusters, or densely populated regions, according

to some distance measurement, in a large, multidimensional data set. Given a large set of multidi-

mensional data points, the data space is usually not uniformly occupied by the data points. Data

clustering identi�es the sparse and the crowded places, and hence discovers the overall distribution

patterns of the data set.

Data clustering has been studied in statistics [18, 47], machine learning [31, 32], spatial database

[11], and data mining [18, 27, 62, 85] areas with di�erent emphases.

As a branch of statistics, clustering analysis has been studied extensively for many years, mainly

focused on distance-based clustering analysis. Systems based on statistical classi�cation methods,

such as AutoClass [18] which uses a Bayesian classi�cation method, have been used in clustering

in real world databases with reported success.

The distance-based approaches assume that all the data points are given in advance and can

be scanned frequently. They are global or semi-global methods at the granularity of data points.

That is, for each clustering decision, they inspect all data points or all currently existing clusters

equally no matter how close or far away they are, and they use global measurements, which require

scanning all data points or all currently existing clusters. Hence they do not have linear scalability

with stable clustering quality.
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In machine learning, clustering analysis often refers to unsupervised learning, since which classes

an object belongs to are not prespeci�ed, or conceptual clustering, because the distance measure-

ment may not be based on geometric distance, but be based on that a group of objects represents

a certain conceptual class. One needs to de�ne a measure of similarity between the objects and

then apply it to determine classes. Classes are de�ned as collections of objects whose intraclass

similarity is high and interclass similarity is low.

The method of clustering analysis in conceptual clustering is mainly based on probability analy-

sis. Such approaches, represented by [31, 32], make the assumption that probability distributions

on separate attributes are statistically independent of each other. This assumption is, however,

not always true since correlation between attributes often exists. Moreover, the probability distri-

bution representation of clusters makes it very expensive to update and store the clusters. This is

especially so when the attributes have a large number of values since their time and space com-

plexities depend not only on the number of attributes, but also on the number of values for each

attribute. Furthermore, the probability-based tree (such as [31]) that is built to identify clusters

is not height-balanced for skewed input data, which may cause the time and space complexity to

degrade dramatically.

Clustering analysis in large databases has been studied recently in the database community.

6.1 Clustering large applications based upon randomized search

Ng and Han presented a clustering algorithm, CLARANS (Clustering Large Applications based

upon RANdomized Search) [62], based on randomized search and originated from two clustering

algorithms used in statistics, PAM (Partitioning Around Medoids) and CLARA (Clustering LARge

Applications) [48].

The PAM algorithm [48] �nds k clusters in n objects by �rst �nding a representative object for

each cluster. Such a representative, which is the most centrally located point in a cluster, is called

a medoid. After selecting k medoids, the algorithm repeatedly tries to make a better choice of

medoids by analyzing all possible pairs of objects such that one object is a medoid and the other is

not. The measure of clustering quality is calculated for each such combination. The best choice of

points in one iteration is chosen as the medoids for the next iteration. The cost of a single iteration

is O(k(n� k)2). It is therefore computationally ine�cient for large values of n and k.

The CLARA algorithm [48] accomplishes the same task whereas it utilizes the technique of

sampling. Only a small portion of the real data is chosen as a representative of the data and medoids
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are chosen from this sample using PAM. The idea is that if the sample is selected in a fairly random

manner, then it correctly represents the whole data set, and the representative objects (medoids)

chosen will therefore be similar to those chosen from the whole data set. CLARA draws multiple

samples and outputs the best clustering out of these samples. As expected, CLARA can deal with

larger data sets than PAM. However, since CLARA searches for the best k medoids among the

selected sample of the data set, it cannot �nd the best clustering if any sampled medoid is not

among the best k medoids.

The CLARANS algorithm [62] tries to integrate PAM and CLARA by searching only the

subset of the data set but not con�ning itself to any sample at any given time. While CLARA

has a �xed sample at every stage of the search, CLARANS draws a sample with some randomness

in each step of the search. The clustering process can be presented as searching a graph where

every node is a potential solution, i.e., a set of k medoids. The clustering obtained after replacing

a single medoid is called the neighbor of the current clustering. If a better neighbor is found,

CLARANS moves to the neighbor's node and the process is started again, otherwise the current

clustering produces a local optimum. If the local optimum is found, CLARANS starts with new

randomly selected nodes in search for a new local optimum. CLARANS has been experimentally

shown to be more e�ective than both PAM and CLARA. The computational complexity of every

iteration in CLARANS is basically linearly proportional to the number of objects [27, 62]. It should

be mentioned that CLARANS can be used to �nd the most natural number of clusters knat. A

heuristic is adopted in [62] to determine knat, which uses silhouette coe�cients3, introduced by

Kaufman and Rousseeuw [48]. CLARANS also enables the detection of outliers, e.g., points that

do not belong to any cluster.

Based upon CLARANS, two spatial data mining algorithms were developed in a fashion similar

to the attribute-oriented induction algorithms developed for spatial data mining [56, 37]: spatial

dominant approach, SD(CLARANS) and non-spatial dominant approach, NSD(CLARANS). Both

algorithms assume that the user speci�es the type of the rule to be mined and relevant data through

a learning request in a similar way as DBMiner [40]. Experiments show that the method can be

used to cluster reasonably large data sets, such as houses in the Vancouver area, and the CLARAN

algorithm outperforms PAM and CLARA.

3It is a property of an object that speci�es how much the object truly belongs to the cluster.
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6.2 Focusing methods

Ester et al. [27] pointed out some drawbacks of the CLARANS clustering algorithm [62] and

proposed new techniques to improve its performance.

First, CLARANS assumes that the objects to be clustered are all stored in main memory. This

assumption may not be valid for large databases and disk-based methods could be required. This

drawback is alleviated by integrating CLARANS with e�cient spatial access methods, like R*-tree

[11]. R*-tree supports the focusing techniques that Ester et al. proposed to reduce the cost of

implementing CLARANS. Ester et al. showed that the most computationally expensive step of

CLARANS is calculating the total distances between the two clusters. Thus, they proposed two

approaches to reduce the cost of this step.

The �rst one is to reduce the number of objects considered. A centroid query returns the

most central object of a leaf node of the R*-tree where neighboring points are stored. Only these

objects are used to compute the medoids of the clusters. Thus, the number of objects taken for

consideration is reduced. This technique is called focusing on representative objects. The drawback

is that some objects, which may be better medoids, are not considered, but the sample is drawn in

the way which still enables good quality of clustering.

The other technique to reduce computation is to restrict the access to certain objects that do not

actually contribute to the computation, with two di�erent focusing techniques: focus on relevant

clusters, and focus on a cluster. Using the R*-tree structure, computation can be performed only

on pairs of objects that can improve the quality of clustering instead of checking all pairs of objects

as in the CLARANS algorithm.

Ester et al. applied the focusing on representative objects to a large protein database to �nd

a segmentation of protein surfaces so as to facilitate the so-called docking queries. They reported

that when the focusing technique was used the e�ectiveness (the average distance of the resulting

clustering) decreased just from 1.5% to 3.2% whereas the e�ciency (CPU time) increased by a

factor of 50.

6.3 Clustering features and CF trees

R-trees are not always available and their construction may be time consuming. Zhang et. al. [85]

presented another algorithm, BIRCH (Balanced Iterative Reducing and Clustering), for clustering

large sets of points. The method they presented is an incremental one with the possibility of
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adjustment of memory requirements to the size of memory that is available.

Two concepts, Clustering Feature and CF tree, are introduced.

A Clustering Feature CF is the triplet summarizing information about subclusters of points.

Given N d-dimensional points in subcluster: fXig, CF is de�ned as

CF = (N; ~LS; SS)

where N is the number of points in the subcluster, ~LS is the linear sum on N points, i.e.,
PN

i=1
~Xi,

and SS is the square sum of data points, i.e.,
PN

i=1
~Xi

2
. The Clustering Features are su�cient for

computing clusters and they constitute an e�cient storage information method as they summarize

information about the subclusters of points instead of storing all points.

A CF tree is a balanced tree with two parameters: branching factor B and threshold T . The

branching factor speci�es the maximum number of children. The threshold parameter speci�es the

maximum diameter of subclusters stored at the leaf nodes. By changing the threshold value we

can change the size of the tree. The non-leaf nodes are storing sums of their children's CF s, and

thus, they summarize the information about their children. The CF tree is build dynamically as

data points are inserted. Thus, the method is an incremental one. A point is inserted to the closest

leaf entry (subcluster). If the diameter of the subcluster stored in the leaf node after insertion is

larger than the threshold value, then, the leaf node and possibly other nodes are split. After the

insertion of the new point, the information about it is passed towards the root of the tree. One can

change the size of the CF tree by changing the threshold. If the size of the memory that is needed

for storing the CF tree is larger than the size of the main memory, then a larger value of threshold

is speci�ed and the CF tree is rebuilt. The rebuild process is performed by building a new tree

from the leaf nodes of the old tree. Thus, the process of rebuilding the tree is done without the

necessity of reading all the points. Therefore, for building the tree, data has to be read just once.

Some heuristics and methods are also introduced to deal with outliers and improve the quality of

CF trees by additional scans of the data.

Zhang et. al. claimed that any clustering algorithm, including CLARANS can be used with

CF trees. The CPU and I/O costs of the BIRCH algorithm are of order O(N). A good number of

experiments reported in [85] show linear scalability of the algorithm with respect to the number of

points, insensibility to the input order, and good quality of clustering of the data.
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7 Pattern-based Similarity Search

Next, we discuss data mining techniques based on pattern-based similarity search. When searching

for similar patterns in a temporal or spatial-temporal database, two types of queries are usually

encountered in various data mining operations:

� Object-relative similarity query (i.e., range query or similarity query) in which a search is

performed on a collection of objects to �nd the ones that are within a user-de�ned distance

from the queried object.

� All-pair similarity query (i.e., spatial join) where the objective is to �nd all the pairs of

elements that are within a user-speci�ed distance from each other.

Signi�cant progress has recently been made in sequence matching for temporal databases [1,

5, 28, 29, 54, 57] and for speech recognition techniques such as dynamic time warping [81]. Two

types of similarity queries for temporal data have emerged thus far: whole matching [1] in which

the target sequence and the sequences in the database have the same length; subsequence matching

[29] in which the target sequence could be shorter than the sequences in the database and the

match can occur at any arbitrary point. Various approaches proposed in the literature di�er in

the following aspects. The �rst one is the similarity measure chosen. The second is whether the

comparison is performed in time domain vs transformed domain. The third is the generality of

the approach whether subsequence of arbitrary length, scaling and translation are allowed in the

matching. Finally, di�erent techniques have been explored to reduce the number of comparisons

or search space during mining.

7.1 Similarity measures

Di�erent similarity measures have been considered, mainly the Euclidean distance [1, 29, 28] and

the correlation [54]. The Euclidean distance between two sequences is de�ned as follows. Let fxig

be the target sequence and fyig be a sequence in the database. Let n be the length of fxig, N be

the length of fyig, and assume n � N .

Consider only subsequences of length n of fyig. The J th subsequence of length n of fyig is

denoted as fzJi g, where J is the o�set. A metric for measuring the similarity between fxig and

fyig can be de�ned as

27



min
J

nX
i=1

(xi �KJz
J
i )

2 (7.1)

where KJ be a scaling factor. Assume that the subsequences are generated dynamically from the

original sequence at query time. For each sequence of length N , a total of N � n subsequences of

length n need to be considered at query time.

The Euclidean distance is only meaningful for measuring the distance between two vectors with

the same dimension. Another possible similarity measure is the correlation between two sequences

as considered in [54]. This measure not only gives the relative similarity as a function of location

but also eliminates the need to generate all the subsequences of given length n of each time series

in the database.

The linear correlation between a target sequence fxig and a sequence in the database fyig is

de�ned as

ci =

Pn

j=1 xjyi+jqPn

j=1 x
2
j

qPN

j=1 y
2
j

; (7.2)

for i = 1; : : : ; N + n� 1. Such an operation can be expensive, especially for long target sequences

fxig. Yet, when this is the case, the convolution theorem for Fourier transforms o�ers an appealing

solution to the problem. First, zeros can be added at the end of the sequences fxig and fyig, thus

generating new sequences fx
0

ig and fy
0

ig both with length l = N +n� 1. Then the Discrete Fourier

Transforms (DFT), fXig and fYig of fx
0

ig and fy
0

ig, can be calculated. Finally the correlation

coe�cient can be obtained by multiplying pointwise fXig and fYig and inverting the result, as

ci =
F�1fX�

j YjgqPn

j=1X
2
j

qPN

j=1 Y
2
j

(7.3)

where X�
j denotes the complex conjugate of Xj. The denominators of equations (7.2) and (7.3) are

equal in virtue of Parseval's Theorem [1]. If both fxig and fyig are properly normalized, the value

of correlation coe�cient ci is a similarity measure of two sequences and ranges from �1 to 1, where

1 indicates a perfect match. With noisy signals, the correlation value is always smaller than one

and the peaks of the sequence fcig give the locations of possible matches.
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7.2 Alternative approaches

The straightforward approach for whole matching is to consider all of the data points of a sequence

simultaneously. In [46], the concept of mapping an object to a point in the feature space and

then applying multidimensional indexing method to perform similarity search is explored. A fast

whole matching method generalizing this idea to sequence matching is proposed in [1], where the

similarity between a stored sequence in the database and a target sequence is measured by the

Euclidean distance between the features extracted from these two sequences in the Fourier domain.

Extending the above concept, an innovative approach is proposed in [29] to match subsequences

by generating the �rst few Fourier coe�cients of all possible subsequences of a given length for

each stored sequence in the database. The idea is to match each sequence into a small set of

multidimensional rectangles in the feature space. These rectangles can then be indexed by spatial

access methods like R-tree family of indexes. This approach uses a moving window of a given length

to slice each sequence at every possible position, and extracts features for each subsequence in the

window. (The window size determines not only the minimum target sequence length that can be

matched, but also the e�ectiveness of the search.) Thus each sequence maps into a trail in the

feature space when sliding the moving window across the sequence. To reduce bookkeeping, each

trail of feature vectors is divided into sub-trails and each of these sub-trails is represented with its

minimum bounding rectangle.

Fourier transformation is by no means the best method of feature extraction. It is known that

the a priori relative importance of the features can be optimally determined from the singular

value decomposition (SVD) or the Karhunen-Loeve transformation on the covariance matrix of

the collection of the time sequences [64]. A fast heuristic algorithm which approximates this

dimensionality reduction process is proposed in [28]. Even with the signi�cant dimensionality

reduction resulting from the algorithm proposed in [28] and the compression of the representations of

the subsequences in the feature space using the method proposed in [29], generating all subsequences

from each time series is still a daunting task for a database of long sequences.

In [54], an enhancement is proposed of the feature extraction and matching method discussed

in [29]. This new approach on subsequence matching is referred to as HierarchyScan. It uses the

correlation coe�cient as an alternative similarity measure between the target sequence and the

stored sequences, and performs an adaptive scan on the extracted features of the stored sequences

based on the target sequence. Because of the use of correlation as a similarity measure, the method

is insensitive to the possible scale and phase di�erences between the stored sequences and the target

sequence. It also eliminates the need of generating all subsequences from each stored sequence for
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subsequence matching. To improve the search e�ciency, HierarchyScan �rst selects the subset

of features with the greatest discriminating capability (i.e., the features with the largest �ltering

e�ect) to perform the matching (correlating). Only a small fraction of the sequences is expected

to pass the test. Then the next most discriminating set of features is used for matching. This

process is iterated until all of the features are exhausted. Compared to the method proposed in

[29], HierarchyScan performs a hierarchical scan instead of using a tree structure for indexing.

Di�erent transformations were considered in [54].

In [5], another approach is introduced to determine all similar sequences in a set of sequences.

It is also applicable to �nd all subsequences similar to a target sequence. The similarity measure

considered is the Euclidean distance between the sequences and the matching is performed in the

time domain. An R-tree type index is maintained for all subsequences of a given length (say, !).

The matching of all similar sequences consists of three steps. In the �rst step, all matching pairs

of subsequences of length ! are identi�ed using the R-tree type index. In the second step, for each

pair of sequences, the matching pairs in step one are stitched into long subsequence matches. The

third step linearly orders the long subsequence matches found in the second step to determine the

one with the longest match length. This approach allows the amplitude of one of the two sequences

to be scaled and its o�set adjusted properly. It also permits non-matching gaps in the matching

subsequences.

8 Mining Path Traversal Patterns

In a distributed information providing environment, documents or objects are usually linked to-

gether to facilitate interactive access. Examples for such information providing environments in-

clude World Wide Web (WWW) [23] and on-line services, such as Prodigy, CompuServe and

America Online, where users, when seeking for information of interest, travel from one object to

another via the corresponding facilities (i.e., hyperlinks and URL addresses) provided. Clearly,

understanding user access patterns in such environments will not only help improving the system

design (e.g., providing e�cient access between highly correlated objects, better authoring design

for pages, etc.) but also be able to lead to better marketing decisions (e.g., putting advertisements

in proper places, better customer/user classi�cation and behavior analysis, etc.). Capturing user

access patterns in such environments is referred to as mining path traversal patterns. Note that

although some e�orts have been elaborated upon analyzing the user behavior [12, 15, 16], mining

path traversal patterns is still in its infancy. This can be in part explained by the reason that

these information providing services, though with great potential, are mostly in their infancy and
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their customer analysis may still remain in a coarser level such as the frequency of a page vis-

ited and user occupation/age study. Note that, as pointed out in [19], since users are traveling

along the information providing services to search for the desired information, some objects are

visited because of their locations rather than their content, showing the very di�erence between

the traversal pattern problem and others which are mainly based on customer transactions. This

unique feature of the traversal pattern problem unavoidably increases the di�culty of extracting

meaningful information from a sequence of traversal data, and explains the reason that current web

usage analysis products are only able to provide statistical information for travelling points, but

not for travelling paths. However, as these information providing services are becoming increasingly

popular nowadays, there is a growing demand for capturing user travelling behavior and improving

the quality of such services.

In response to this demand, the problem of mining traversal patterns was explored in [19], where

the proposed solution procedure consists of two steps. First, an algorithm was devised to convert

the original sequence of log data into a set of traversal subsequences. Each traversal subsequence

represents a maximal forward reference from the starting point of a user access. It is noted that

this step of converting the original log sequence into a set of maximal forward references will �l-

ter out the e�ect of backward references which are mainly made for ease of traveling, and enable

us to concentrate on mining meaningful user access sequences. Second, algorithms to determine

the frequent traversal patterns, termed large reference sequences, from the maximal forward ref-

erences obtained above were developed, where a large reference sequence is a reference sequence

that appeared a su�cient number of times in the database. For example, suppose the traversal log

contains the following traversal path for a user: fA;B; C;D; C; B;E;G;H;G; W;A;O; U;O; Vg, as

shown in Figure 5. Then, the set of maximal forward references for this user is fABCD;ABEGH;

ABEGW;AOU;AOV g. After maximal forward references for all users are obtained, the problem

of �nding frequent traversal patterns is mapped into the one of �nding frequent occurring con-

secutive subsequences among all maximal forward references. After large reference sequences are

determined, maximal reference sequences can then be obtained in a straightforward manner. A

maximal reference sequence is a large reference sequence that is not contained in any other maxi-

mal reference sequence. Suppose that fAB;BE;AD;CG;GH;BGg is the set of large 2-references

and fABE;CGHg is the set of large 3-references. Then, the resulting maximal reference sequences

are AD;BG;ABE; and CGH . A maximal reference sequence corresponds to a frequently accessed

pattern in an information providing service.

It is noted that the problem of �nding large reference sequences is similar to that of �nding

large itemsets for association rules [4] where a large itemset is a set of items appearing in a su�cient
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Figure 5: An illustrative example for traversal patterns.

number of transactions. However, they are di�erent from each other in that a reference sequence in

mining traversal patterns has to be consecutive references in a maximal forward reference whereas

a large itemset in mining association rules is just a combination of items in a transaction. As a

consequence, the very di�erence between these two problems calls for the use of di�erent algorithms

for mining the knowledge required. As the popularity of internet explodes nowadays, it is expected

that how to e�ectively discover knowledge on the web will be one of the most important data

mining issues for years to come.

9 Summary

Data mining is a fast expanding �eld with many new research results reported and new systems

or prototypes developed recently. Researchers and developers in many �elds have contributed

to the state-of-the-art of data mining [30, 70]. Therefore, it is a challenging task to provide a

comprehensive overview of the data mining methods within a short article. This article is an attempt

to provide a reasonably comprehensive survey, from a database researcher's point of view, on the

data mining techniques developed recently. An overview of data mining and knowledge discovery,

from some data mining and machine learning researchers, has been performed recently [69]. The
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major di�erence of our survey from theirs is the focus of this survey is on the techniques developed

by database researchers, with an emphasis on e�cient methods for data mining in very large

databases. A classi�cation of the available data mining techniques is provided and a comparative

study of such techniques has been presented.

Based on the diversity of data mining methods and rich functionalities of data mining investi-

gated so far, many data mining systems or prototypes have been developed recently, some of which

have been successfully used for mining knowledge in large databases. Here we brie
y introduce

some data mining systems reported in recent conferences and journals. However, this introduction

is by no means complete. Appendices are welcome, and a comprehensive overview of such systems

is necessary.

Quest is a data mining system developed at the IBMAlmaden Research Center by Agrawal, et al.

[6], which discovers various kinds of knowledge in large databases, including association rules [7, 78,

79], sequential patterns [8], classi�cation rules [59], pattern matching and analysis [5], etc. KEFIR is

a knowledge discovery system developed at the GTE Labs by Piatetsky-Shapiro, et al. [68, 58] for the

analysis of health care data. SKICAT is a knowledge discovery system, developed at Jet Propulsion

Laboratory, which automatically detects and classi�es sky objects from image data resulting from

a major astronomical sky survey. DBMiner is a relational data mining system developed at Simon

Fraser University by Han, et al. [37, 39, 40], for mining multiple kinds of rules at multiple abstraction

levels, including characteristic rules, discriminant rules, association rules, classi�cation rules, etc.

KnowledgeMiner is a data mining system, developed by Shen et al. [75], which integrates data

mining with deductive database techniques and using meta-rule to guide the data mining process.

INLEN is a system, developed by Michalski, et al. [61], which integrates multiple learning paradigms

in data mining. Explora is a multipattern and multistrategy discovery assistant developed by

Kl�osgen [52]. IMACS is a data mining system developed at AT&T Laboratory by Brachman et

al. [13], using sophisticated knowledge representation techniques. DataMine is system exploring

interactive ad-hoc query-directed data mining, developed by Imielinski, et al. [45]. IDEA, developed

at AT&T Laboratory by Selfridge, et al. [74], performs interactive data explorations and analysis.

There have been many other data mining systems reported by machine learning and statistics

researchers. Moreover, data warehousing systems have been seeking data mining tools for further

enhancement of data analysis capabilities, and it is likely to see a trend of integration of the

techniques of data warehousing and data mining in the near future.

Besides the work done by database researchers, there have been fruitful results on data mining

and knowledge discovery reported in many others �elds. For example, researchers in statistics have

developed many techniques which may bene�t data mining [26]. Inductive logic programming [25]
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is a fast growing sub�eld in logic programming which is closely related to data mining. There have

also been active studies on data mining using data visualization techniques [49] and visualization

of data mining results [51]. For lack of space, the results and issues in these related �elds cannot be

presented in this short article. An overview of data mining and knowledge discovery in a broader

spectrum is left as a future exercise.

As a young and promising �eld, data mining still faces many challenges and unsolved problems

which pose new research issues for further study. For example, further development of e�cient

methods for mining multiple kinds of knowledge at multiple abstraction levels, a 
exible and con-

venient data mining language or interface, the development of data mining techniques in advanced

database systems, such as active databases, object-oriented databases, spatial databases, and mul-

timedia databases, data mining in Internet information systems, the application of discovered

knowledge, the integration of discovered and expert-de�ned knowledge, and the method to ensure

security and protection of privacy in data mining, are important issues for further study.
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